and Wang, Y. (2014). Whole-Genome bisulfite sequencing of multiple

ividuals reveals complementary roles of promoter and gene body methylation

ranscriptional regulation, Genome Biology, 15, pp. 408.

, Huber, W. and Anders, S. (2014). Moderated estimation of fold change and

persion for RNA-seq data with DESeq2, Genome Biology, 15, pp. 550.

A. and Goldman, N. (2005). An algorithm for progressive multiple alignment

equences with insertions, Proceedings of the National Academy of Sciences of

United States of America, 102, pp. 10557–10562.

Diab, A. R., Haslam, B., Kim, J. G., Grisot, G., Wu, E., Wu, K., Onieva, J. O.,

yer, Y., Boxerman, J. L., Wang, M., Bandler. M., Vijayaraghavan, G. R. and

ensen, A. G. (2021). Robust breast cancer detection in mammography and

ital breast tomosynthesis using an annotation-efficient deep learning approach,

ure Medicine, doi: 10.1038/s41591-020-01174-9.

eng, Z., Zhao, Y. and Volchenboum, S. L. (2011). Bioinformatic analysis and

t-translational modification crosstalk prediction of lysine acetylation, PLoS

e, 6, pp. e28228.

McLachlan, A. D. and Eisenberg, D. (1991). Secondary structurebased

files: Use of structureconserving scoring tables in searching protein sequence

abases for structural similarities, Proteins, 10, pp. 229–239.

. J. C. (1992). Bayesian interpolation, Neural Computation, 4, pp. 415–447.

D. J. C. (2003). Information Theory, Inference, and Learning Algorithms,

mbridge University Press, Cambridge).

J. B. (1967). Some methods for classification and analysis of multivariate

ervations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics

d Probability, Berkeley, University of California Press, 1, pp. 281–297.

Y., Steinegger, M., Rost, B. and Bromberg, Y. (2018). HFSP: high speed

mology-driven function annotation of proteins, Bioinformatics, 34, pp. i304–

2.

, Zhang, X., Gil, M. and Anisimova, M. (2018). Progressive multiple sequence

nment with indel evolution, BMC Bioinformatics, 19, pp. 331.

d Das, C. (2010). Protein functional sites prediction using modified bio-basis

ction and quantitative indices, IEEE Transaction on Nanobioscience, 9, pp.

–257.

nd Das, C. (2010b). Efficient design of bio-basis function to predict protein

ctional

sites

using

kernel-based

classifiers,

IEEE

Transaction

on

nobioscience, 9, pp. 242–249.

R. K., Raut, S. A., and Purohit, H. J. (2018). Identification of common key

es in breast, lung and prostate cancer and exploration of their heterogenous

ression, Oncology Letters, pp. 1680–1690.

M., Bahlmann, J., Friederici, A. D. (2012). An approach to separating the levels

hierarchical structure building in language and mathematics, Philosophical

nsactions of the Royal Society B: Biological Sciences, 367, pp. 2033–2045.